Guangshun Wang, Ph.D.
Professor Department of Pathology, Microbiology and Immunology University of Nebraska Medical Center Omaha, NE 68198-5900 USA Phone: 402-559-4176 gwang@unmc.edu |
PI's Selected Publications on Antimicrobial Peptides
Journal articles:
2023
Wang G.* 2023. The antimicrobial peptide database is 20 years old: Recent developments and future directions. Protein Sci. 32, e4778. doi: 10.1002/pro.4778. PubMed.
Mechesso AF, Su Y, Xie J, Wang G.* 2023. Enhanced Antimicrobial Screening Sensitivity Enabled the Identification of an Ultrashort Peptide KR-8 for Engineering of LL-37mini to Combat Drug-Resistant Pathogens. ACS Infect Dis., In press. DOI: 10.1021/acsinfecdis.3c00293. PubMed.
Sowers A, Wang G, Xing M, Li B.* 2023. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 11, 1129. DOI: 10.3390/microorganisms11051129. PubMed.
Liu C, Henning-Knechtel A, Osterlund N, Wu J, Wang G, Graslund RAO, Kirmizialtin S, Luo J.* 2023. Oligomer Dynamics of LL-37 Truncated Fragments Probed by a-Hemolysin Pore and Molecular Simulations. Small 19, e2206232. DOI: 10.1002/smll.202206232. PubMed.
Su Y, Andrabi SM, Shahriar SMS, Wong SL, Wang G, Xie J.* 2023. Triggered release of antimicrobial peptide from microneedle patches for treatment of wound biofilms. J Control Release 356, 131-141. DOI: 10.1016/j.jconrel.2023.02.030. PubMed.
John JV, Sharma NS, Tang G, Luo Z, Su Y, Weihs S, Shahriar SMS, Wang G, McCarthy A, Dyke J, Zhang YS, Khademhosseini A, Xie J.* 2023. Nanofiber Aerogels with Precision Macrochannels and LL-37-Mimic Peptides Synergistically Promote Diabetic Wound Healing. Adv Funct Mater. 33, 2206936. DOI: 10.1002/adfm.202206936. PubMed.
Decker AP, Su Y, Mishra B, Verma A, Lushnikova T, Xie J, Wang G.* 2023. Peptide Stability Is Important but Not a General Requirement for Antimicrobial and Antibiofilm Activity In Vitro and In Vivo. Mol Pharm. 20, 738-749. DOI: 10.1021/acs.molpharmaceut.2c00918. PubMed.
2022
Decker AP, Mechesso AF, Wang G.* 2022. Expanding the Landscape of Amino Acid-Rich Antimicrobial Peptides: Definition, Deployment in Nature, Implications for Peptide Design and Therapeutic Potential. Int J Mol Sci. 23 , 12874. DOI: 10.3390/ijms232112874. PubMed.
Decker AP, Mechesso AF, Zhou Y, Xu C, Wang G.* 2022. Hydrophobic diversification is the key to simultaneously increased antifungal activity and decreased cytotoxicity of two ab initio designed peptides. Peptides. 158 , 170880. DOI: 10.1016/j.peptides.2022.170880. PubMed.
Lee SG, Kiattiburut W, Khongkha T, Schinkel SCB, Lunn Y, Decker AP, Mohammadi A, Vera-Cruz A, Misra A, Angel JB, Anderson DJ, Baker M, Kaul R, Wang G, Tanphaichitr N.* 2022. 17BIPHE2, an engineered cathelicidin antimicrobial peptide with low susceptibility to proteases, is an effective spermicide and microbicide against Neisseria gonorrhoeae. Hum Reprod. 37, 2503-2517. doi: 10.1093/humrep/deac188. PubMed.
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. 2022. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. Adv Sci 9 , e2203291. DOI: 10.1002/advs.202203291 PubMed.
Wu, Q., Mishra, B., Wang, G.* 2022. Linearized teixobactin is inactive and after sequence enhancement, kills methicillin-resistant Staphylococcus aureus via a different mechanism. Peptide Science , e24269. DOI: 10.1002/pep2.24269 Wiley.
Ripperda, T., Yu, Y., Verma, A., Klug, E., Thurman, M., Reid, S.P.*, Wang, G.* 2022. Improved Database Filtering Technology Enables More Efficient Ab Initio Design of Potent Peptides against Ebola Viruses. Pharmaceuticals 15, 521. doi: 10.3390/ph15050521. MDPI.
Wang, G.*, Mechesso AF. 2022. Realistic and critical review of the state of systemic antimicrobial peptides. ADMET DMPK 10, 91-105. doi: 10.5599/admet.1215. PubMed.
Wang, G.*, Vaisman II*, van Hoek ML*. 2022. Machine Learning Prediction of Antimicrobial Peptides. Methods Mol Biol. 2405, 1-37. doi: 10.1007/978-1-0716-1855-4_1. PubMed.
Wang, G.*, 2022. Unifying the classification of antimicrobial peptides in the antimicrobial peptide database. Methods in Enzymology 663, 1-18. DOI: 10.1016/bs.mie.2021.09.006 Elsevier online.
Wang, G.*, Zietz, C.M., Mudgapalli, A., Wang, S., Wang, Z. 2022. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. Protein Sci. 31, 92-106. doi: 10.1002/pro.4185. PubMed.
2021
Zhang Y, Lakshmaiah Narayana J, Wu Q, Dang X, Wang G.* 2021. Structure and Activity of a Selective Antibiofilm Peptide SK-24 Derived from the NMR Structure of Human Cathelicidin LL-37. Pharmaceuticals (Basel) 14, 1245. doi: 10.3390/ph14121245. PubMed.
Bobde SS, Alsaab FM, Wang G, Van Hoek ML.* 2021. Ab initio Designed Antimicrobial Peptides Against Gram-Negative Bacteria. Front Microbiol. 12, 715246. doi: 10.3389/fmicb.2021.715246. PubMed.
Lakshmaiah Narayana, J., Golla, R., Mishra, B., Wang, X., Lushnikova, T., Zhang, Y., Verma, A., Kumar, V., Xie, J., Wang, G.* 2021. Short and Robust Anti-Infective Lipopeptides Engineered Based on the Minimal Antimicrobial Peptide KR12 of Human LL-37. ACS Infect Dis. 7, 1795-1808. doi: 10.1021/acsinfecdis.1c00101. PubMed.
Su, Y., McCarthy, A., Wong, S.L., Hollins, R.R., Wang, G., Xie, J.* 2021. Simultaneous Delivery of Multiple Antimicrobial Agents by Biphasic Scaffolds for Effective Treatment of Wound Biofilms. Adv Healthc Mate. 10, e210035. doi: 10.1002/adhm.202100135. PubMed.
2020
Dang, X. and Wang, G.* 2020. Spotlight on Select New Antimicrobial Innate Immune Peptides Discovered during 2015-2019. Curr. Topics Med. Chem. 20, 2984-2998. doi: 10.2174/1568026620666201022143625. PubMed.
Su, Y., Mainardi, V., Wang, H., McCarthy, A., Zhang, Y.S., Chen, S., John, J., Wong, S., Hollins, R., Wang, G.*, Xie, J.* 2020. Dissolvable Microneedles Coupled with Nanofiber Dressings Eradicate Biofilms via Effectively Delivering a Database Designed Antimicrobial Peptide. ACS Nano 14, 11775-11786. DOI: 10.1021/acsnano.0c04527; PubMed: PMID: 32840361
Wang G.* 2020. Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction. Antibiotics 9, 491. doi: 10.3390/antibiotics9080491. online; PubMed
Lakshmaiah Narayana, J. Mishra, B., Lushinikova, T., Wu, Q., Chhonker, Y.S., Zhang, Y., Zarena, D., Salnikov, E., Dang, X., Wang, F., Murphy, C., Foster, K.W., Gorantla, S., Bechinger, B., Murry, D.J., Wang, G.* 2020. Two distinct amphipathic peptide antibiotics with systemic efficacy. Proc Natl Acad Sci USA 117, 19446-19454. published online July 28. PubMed; DOI: 10.1073/pnas.2005540117
Golla, R.M., Mishra, B., Dang, X., Lakshmaiah Narayana, J., Li, A., Xu, L., Wang G.* 2020. Resistome of Staphylococcus aureus in Response to Human Cathelicidin LL-37 and Its Engineered Antimicrobial Peptides. ACS Infect Dis. 6, 1866-1881. DOI: 10.1021/acsinfecdis.0c00112. online April 28, 2020; PubMed.
Yu, Y., Cooper, C.L., Wang, G., Morwitzer, M.J., Kota, K., Tran, J.P., Bradfute, S.B., Liu, Y., Shao, J., Zhang, A.K., Luo, L.G., Reid, S.P., Hinrichs, S.H., Su, K.2020. Engineered human cathelicidin antimicrobial peptides inhibit Ebola virus infection. iScience 23(4), 100999. DOI: 10.1016/j.isci.2020.100999. online March 2020; PubMed.
Bozelli JC Jr, Yune J, Dang X, Lakshmaiah Narayana, J., Wang G, Epand RM. 2020. Membrane activity of two short Trp-rich amphipathic peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 1862(7), 183280. doi: 10.1016/j.bbamem.2020.183280. online; PubMed
Wang, G.* 2020. The Antimicrobial Peptide Database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides. Protein Sci. 29, 8-18. doi: 10.1002/PRO.3702. PubMed.
2019
Mishra, B.#, Lakshmaiah Narayana, J.#, Lushnikova, T., Wang, X.Q., and Wang, G.* 2019. Low cationicity is important for systemic in vivo efficacy of database-derived peptides against drug-resistant Gram-positive pathogens. Proc Natl Acad Sci USA 116, 13517-13522. doi: 10.1073/pnas.1821410116. online June 17; PubMed.
Su, Y., Wang, H., Mishra, B., Lakshmaiah Narayana, J., Jiang, J., Reilly, D.A., Hollins, R.R., Carlson, M.A., Wang, G.*, and Xie, J.* 2019. Nanofiber dressings topically delivering human cathelicidin LL-37 engineered peptides for treatment of biofilms in chronic wounds. Mol. Pharm. 16, 2011-2020. doi: 10.1021/acs.molpharmaceut.8b01345. PubMed
Lakshmaiah Narayana, J.#, Mishra, B.#, Lushinikova, T.#, Golla, R.M., and Wang, G.* 2019. Modulation of antimicrobial potency of human cathelicidin peptides against the ESKAPE pathogens and in vivo efficacy in a murine catheter-associated biofilm model. Biochim. Biophys. Acta 1861, 1592-1602. doi: 10.1016/j.bbamem.2019.07.012. PubMed.
Wang, G*. Lakshmaiah Narayana, J., Mishra, B., Zhang, Y., Wang, F., Wang, C., Zarena, D., Lushnikova, T., and Wang, X. 2019. Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. Adv Exp Med Biol 1117: 215-240.doi: 10.1007/978-981-13-3588-4_12. PubMed
2018
Wang, X., Mishra, B., Lushnikova, T., Lakshmaiah Narayana, J., Wang, G.* 2018. Amino Acid Composition Determines Peptide Activity Spectrum and Hot-Spot-Based Design of Merecidin. Adv Biosyst. 2(5), pii:1700259.doi: 10.1002/adbi.201700259.PubMed
He, M., Zhang H., Li, Y., Wang G, Tang, B., Zhao, J., Huang, Y., and Zheng, J. 2018. Cathelicidin-derived antimicrobial peptides inhibit Zika virus through direct inactivation and interferon pathway. Frontiers in Immunology 9, 722. doi: 10.3389/fimmu.2018.00722. online; PubMed
Kiattiburut, W., Zhi, R., Lee, S., Foo, A., Hickling, D., Keillor, J., Goto, N., Li, W., Conlan, W., Angel,J., Wang G., Tanphaichitr, N.* 2018. Antimicrobial peptide LL-37 and its truncated forms, GI-20 and GF-17, exert spermicidal effects and microbicidal activity against Neisseria gonorrhoeae. Human Reproduction 33, 2175-2183. doi: 10.1093/humrep/dey315. online; PubMed.
2017
Mishra, B., Lushnikova, T., Golla, R.M., Wang, X.Q., Wang, G.* 2017. Design and surface immobilization of short anti-biofilm peptides. Acta Biomater. 49, 316-328. doi: 10.1016/j.actbio.2016.11.061. PubMed.
Mishra, B., Wang, G.* 2017. Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Biofouling 33, 544-555. PubMed.
Zarena, D.#, Mishra, B.#, Lushnikova, T., Wang, F., Wang, G.* 2017. The π Configuration of the WWW Motif of a Short Trp-rich Peptide Is Critical for Targeting Bacterial Membranes, Disrupting Preformed Biofilms and Killing Methicillin-resistant Staphylococcus aureus. Biochemistry 56, 4039-4043. PubMed
Mishra, B., Wang, G.* 2017. Individual and combined effects of engineered peptides and antibiotics on the Pseudomonas aeruginosa biofilms. Pharmaceuticals 10(3), 58. Online paper. PubMed.
Mishra, B., Reiling, S., Zarena, D., Wang, G.* 2017. Host defense antimicrobial peptide as antibiotics: design and application strategies. Curr. Opin. Chem. Biol. 38, 87-96. doi: 10.1016/j.cbpa.2017.03.014. PubMed
2016
Wang, G.*, Li, X., Wang, Z. 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44, D1087-1093. doi: 10.1093/nar/gkv1278. PDF.
Wang, X.Q., Wang, G.* 2016. Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein Pept. Lett. 23, 707-721. doi: 10.2174/0929866523666160511151320 Epub May 11. PubMed.
Mishra, B., Golla, R., Lau, K., Lushnikova, T., Wang, G.* 2016. Anti-Staphylococcal biofilm effects of human cathelicidin peptides. ACS Med. Chem. Lett. 7, 117-121. doi: 10.1021/acsmedchemlett.5b00433. Abstract.
2015
Wang, G.*, Mishra, B., Lau, K., Lushnikova, T., Golla, R., Wang, X.Q. 2015. Antimicrobial peptides in 2014. Pharmaceuticals. 8, 123-150. doi: 10.3390/ph8010123.PubMed; read the article.
Tripathi, S., Wang, G., White, M., Rynkiewicz, M., Seaton, B., Hartshorn, K.L.* 2015. Identifying the Critical Domain of LL-37 Involved in Mediating Neutrophil Activation in the Presence of Influenza Virus: Functional and Structural Analysis. PLoS One. 10, e0133454. doi: 10.1371/journal.pone.0133454. PubMed.
Wang, G.* 2015.Improved methods for classification, prediction, and design of antimicrobial peptides. Methods in Molecular Biology. 1268, 43-66. doi: 10.1007/978-1-4939-2285-7_3. PubMed; Article PDF.
2014
Wang, G.* 2014. Human Antimicrobial Peptides and Proteins. Pharmaceuticals 7, 545-594. doi: 10.3390/ph7050545. PubMed; Download the PDF here. A review in the special issue on AMPs.
Wang, G.*, Hanke, M.L., Mishra, B., Lushnikova, T., Heim, C.E., Chittezham, Thomas V., Bayles, K.W., Kielian, T. 2014. Transformation of Human Cathelicidin LL-37 into Selective, Stable, and Potent Antimicrobial Compounds. ACS Chem. Biol. 9, 1997-2002. doi: 10.1021/cb500475y. PubMed. The compounds, covered by a patent application, were obtained by combining peptide library screening with structure-based design.
Wang, G.*, Mishra, B., Epand, R.F., Epand, R.M. 2014. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim. Biophys. Acta 1838, 2160-2172. doi: 10.1016/j.bbamem.2014.01.016. PubMed. A review of the 3D structure-activity relationship (SAR) of human LL-37.
2013
Wang, G.* 2013. Database-guided discovery of potent peptides to combat HIV-1 or Superbugs. Pharmaceuticals 6, 728-758. doi: 10.3390/ph6060728. Abstract for this open access article. New examples indicate the importance of the improved 2D NMR method.
2012
Mishra, B., Wang, G.* 2012. Ab initio design of potent anti-MRSA peptides based on database filtering technology (DFT). J. Am. Chem. Soc. 134, 12426-12429. doi: 10.1021/ja305644e. PubMed. Read featured articles on this work in Chemical & Engineering News (C&EN)90(32):35. JACS Spotlights Sept 2012.
Wang, G.*, Epand, R.F., Mishra, B., Lushnikova, T., Thomas, V.C., Bayles, K.W., Epand, R. 2012. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob. Agents Chemother. 56, 845-856. doi: 10.1128/AAC.05637-11. Published online Nov. 14, 2011. PubMed.
Wang, G.*, Elliott, M., Cogen, A.L., Ezell, E.L., Gallo, R.L., Hancock, R.E.W. 2012.Structure, dynamics, antimicrobial and immune modulatory activities of human LL-23 and its single residue variants mutated based on homologous primate cathelicidins. Biochemistry 51, 653-664. doi: 10.1021/bi2016266. Published online Dec. 20, 2011PubMed.
Menousek, J., Mishra, B., Hanke, M.L., Heim, C.E., Kielian, T., Wang, G.* 2012. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int. J. Antimicrob. Agents 39, 402-406. doi: 10.1016/j.ijantimicag.2012.02.003. PubMed.
Mishra, B., Wang, G.* 2012. The importance of amino acid composition in natural antimicrobial peptides (AMPs): an evolutional, structural, and functional perspective. Frontier in Immunology 3, article 221. doi: 10.3389/fimmu.2012.00221. PubMed; Here is the online article.
Wang, G.* 2012. Natural antimicrobial peptides as promising anti-HIV candidates. Current Topics in Peptide & Protein Research 13, 93-110. PubMed for this invited review article.
Wang, G* 2012. Post-translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering. Current Biotechnology 1 72-79. PubMed.
2010
Wang, G.*, Waston, K., Peterkofsky, A., Buckheit, R., Jr. 2010.Identification of novel human immunodeficiency virus type 1 inhibitory peptides based on the antimicrobial peptide database. Antimicrob. Agents Chemother. 54, 1343-1346. doi: 10.1128/AAC.01448-09. PubMed.
Wu, W.K.K., Wang, G., Coffelt, S.B., Betancourt, A.M., Lee, C.W., Yu, J., Sung, J.J.Y., Cho, C.H. 2010. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int. J. Cancer 127(8), 1741-1747. doi: 10.1002/ijc.25489. PubMed.
2009
Wang, G.*, Li, X., Wang, Z. 2009. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37, D933-D937. doi: 10.1093/nar/gkn823. Published online Oct. 28, 2008 PubMed. Invited.
Epand, R.F., Wang, G., Berno, B, Epand, R.M. 2009. Lipid segregation explains the antimicrobial activity of fragments of the human cathelicidin LL-37. Antimicrob. Agents Chemother. 53, 3705-3714. doi: 10.1128/AAC.00321-09. PubMed.
2008
Wang, G.* 2008. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 283, 32637-32643. doi: 10.1074/jbc.M805533200. Click here Protein Data Bank PDB ID: 2K6Oto view the high-quality LL-37 structure determined by 1H,13C,15N-3D NMR. PubMed.
Wang, G.*, Waston, K., Buckheit, R., Jr. 2008. Anti-human immunodeficiency virus type 1 (HIV-1) activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob. Agents Chemother. 52, 3438-3440. DOI: 10.1128/AAC.00452-08. PubMed.
2007
Wang, G.* 2007. Tool developments for structure-function studies of host defense peptides. Protein Pept. Lett. 14, 57-69. doi: 10.2174/092986607779117182. An invited review containing a brief discussion of various databases dedicated to antimicrobial peptides. PubMed.
Wang, G.* 2007. Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample. Biochim. Biophys. Acta 1768, 3271-3281. DOI: 10.1016/j.bbamem.2007.08.005. This paper provides atomic details for the interactions between cationic antimicrobial peptides and anionic phosphatidylglycerols PGs (i.e. between aromatic Phe-PG and Arg-PGs) by solution NMR. PubMed.
2006
Wang, G.* 2006. Structural biology of antimicrobial peptides by NMR spectroscopy. Curr. Org. Chem. 10, 569-581. DOI: 10.2174/138527206776055259. This invited review article summarizes solution and solid-state NMR methods useful for structural studies of antimicrobial peptides, especially in membranes (lipid micelles, bicelles, and bilayers).Abstract.
Li X, Li Y, Peterkofsky A, Wang G.* 2006. NMR studies of aurein 1.2 analogs. Biochim Biophys Acta. 1758, 1203-1214. DOI: 10.1016/j.bbamem.2006.03.032. PubMed.
Li Y, Li X, Wang G.* 2006. Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr Purif. 47, 498-505. DOI: 10.1016/j.pep.2005.10.022. PubMed
Li X, Li Y, Han H, Miller DW, Wang G.* 2006. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J. Am. Chem. Soc. 128, 5776-85. DOI: 10.1021/ja0584875. PubMed. Using the NMR technique called TOCSY-trim, the major antimicrobial region was mapped to residues 17-32 of LL-37 (FK-16. GF-17 contains one additional glycine at the N-terminus of FK-16).
2005
Wang, G.*, Li, Y., Li, X. 2005. Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a non-toxic bacterial membrane anchor. J. Biol. Chem. 280, 5803-5811. DOI: 10.1074/jbc.M410116200. PDB entries: 1VM2, 1VM3, 1VM4, and 1VM5. PubMed. This article illustrates the improved 2D NMR method that involves the use of additional NMR restrainst derived from natural abundance 13C and 15N chemical shifts. High-quality structure of aurein 1.2 is presented.
2004
Wang, Z., Wang, G.* 2004. APD: the Antimicrobial Peptide Database.Nucleic Acids Res. 32, D590-D592. DOI: 10.1093/nar/gkh025. PubMed; This is the original database paper that describes the construction of the APD.
Antimicrobial Peptides Book Chapters:
Wang, G.*, Atul Verma, and Scott Reiling. 2023. Chapter 13: Antimicrobial peptide antibiotics against multidrug-resistant ESKAPE pathogens. In "Antimicrobial Peptides challenges and future perspectives" (K. Ajesh and K. Srijith, edited). pp. 237-250.
Wang, G*. Narayana, J.L., Mishra, B., Zhang, Y., Wang, F., Wang, C., Zarena, D., Lushnikova, T., and Wang, X. 2019. Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. Adv Exp Med Biol., vol 1117, 215-240 (Antimicrobial Peptides, edited by Matsuzaki K), Springer, Singapore.
Wang, G.*, Mishra, B. 2018. Chapter 24: Mechanism of action of tethered antimicrobial peptides. In "Handbook of Antimicrobial Coatings" (Tiwari, A., ed.), Elsevier, pp. 559-566. ISBN: 978-01281-1982-2.
Wang, G.* 2017. Discovery, Classification and Functional Diversity of Antimicrobial Peptides. In Wang, G. (ed.) "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies" (2nd edition). CABI, Oxfordshire, UK, pp. 1-19. online
Wang, G.* 2017. Prediction and Design of Antimicrobial Peptides: Methods and Applications to Genomes and Proteomes. In Wang, G. (ed.) "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies" (2nd edition). CABI, Oxfordshire, UK, pp. 101-118. online
Wang, G.* 2017. Structural insight into the mechanisms of action of antimicrobial peptides and structure-based design. In Wang, G. (ed.) "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies" (2nd edition). CABI, Oxfordshire, UK, pp. 169-187. online
Wang, G.* 2016. Structural Analysis of Amphibian, Insect and Plant Host Defense Peptides Inspires the Design of Novel Therapeutic Molecules. In "Host Defense Peptides and Their Potential as Therapeutic Agents" (Epand, R.M., ed.), pp 229-252. Abstract
Wang, G.* 2015.Database resources dedicated to antimicrobial peptides. In "Antimicrobial Resistance and Food Safety: Methods and Techniques " (Chen, C.-Y., Yan, X., and Jackson, C.R., eds.), Academic Press, Boston, pp. 365-384. This chapter reviews 23 databases for (or related to) AMPs as of June 2014. Read the chapter here.
* Corresponding author.
# Equal contribution.
Antimicrobial Peptide Special issues edited by Dr. Wang:
(1) Antimicrobial peptides from different life kingdoms (edited by G. Wang);
(2) Antimicrobial Peptides: Expanded Activity Spectrum and Applications (Edited by G. Wang).
Antimicrobial Peptide Books edited by Dr. Wang:
Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies (edited by G. Wang), CABI, England, version 2, 2017. ISBN: 978-1-78639-039-4 Published on Sept 5, 2017.
Identification and Characterization of Antimicrobial Peptides with Therapeutic Potential (edited by G. Wang), MDPI, 2017. ISBN: 978-3-03842-463-5 Published on Nov 3, 2017.
Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies (edited by G. Wang), CABI, England, 2010.