title banner reads
About APD | Search Database | Prediction | Peptide Design | Statistics | FAQs | Links | Contact
| AMP Chronicle | Nomenclature | Classification | Glossary | AMP Facts | Structure | Tools|

Guangshun Wang, Ph.D.
Associate Professor
Department of Pathology & Microbiology
University of Nebraska Medical Center
Omaha, NE 68198-5900, USA
Phone: 402-559-4176
PI's Selected Publications

Wang, Z., Wang, G.* 2004. APD: the Antimicrobial Peptide Database. Nucleic Acids Res. 32, D590-D592. DOI: 10.1093/nar/gkh025. This is the original database paper that describes the construction of the APD.

Wang, G.*, Keifer, P.A., Peterkofsky, A. 2004. Short-chain diacyl phosphatidylglycerols: which one to choose for NMR structural determination of a membrane-associated peptide from Escherichia coli? Spectroscopy 18, 257-264. D8PG is utilized as an another bacterial membrane-mimetic model for structural studies of membrane-targeting AMPs by solution NMR. Abstract.

Keifer, P.A., Peterkofsky, A., Wang, G.* 2004. Effects of detergent alkyl chain length and chemical structure on the properties of a micelle-bound bacterial membrane targeting peptide. Anal Biochem. 331, 33-39. DOI: 10.1016/j.ab.2004.03.074.

Wang, G.*, Li, Y., Li, X. 2005. Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a non-toxic bacterial membrane anchor. J. Biol. Chem. 280, 5803-5811. DOI: 10.1074/jbc.M410116200. PDB entries: 1VM2, 1VM3, 1VM4, and 1VM5. Abstract. This article illustrates the improved 2D NMR method that involves the use of additional NMR restrainst derived from natural abundance 13C and 15N chemical shifts. High-quality structure of aurein 1.2 is presented.

Wang, G.* 2006. Structural biology of antimicrobial peptides by NMR spectroscopy. Curr. Org. Chem. 10, 569-581. DOI: 10.2174/138527206776055259. This invited review article summarizes solution and solid-state NMR methods useful for structural studies of antimicrobial peptides, especially in membranes (lipid micelles, bicelles, and bilayers).Abstract.

Li X, Li Y, Peterkofsky A, Wang G.* 2006. NMR studies of aurein 1.2 analogs. Biochim Biophys Acta. 1758, 1203-1214. DOI: 10.1016/j.bbamem.2006.03.032. PubMEd Abstract.

Li Y, Li X, Wang G.* 2006. Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr Purif. 47, 498-505. DOI: 10.1016/j.pep.2005.10.022. PubMed Abstract

Li X, Li Y, Han H, Miller DW, Wang G.2006. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J. Am. Chem. Soc. 128, 5776-85. DOI: 10.1021/ja0584875. Abstract. Using the NMR technique called TOCSY-trim, the major antimicrobial region was mapped to residues 17-32 of LL-37 (FK-16. GF-17 contains one additional glycine at the N-terminus of FK-16).

Wang, G.* 2007. Tool developments for structure-function studies of host defense peptides. Protein Pept. Lett. 14, 57-69. DOI: 10.2174/092986607779117182. An invited review containing a brief discussion of various databases dedicated to antimicrobial peptides. Abstract.

Wang, G.* 2007. Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample. Biochim. Biophys. Acta 1768, 3271-3281. DOI: 10.1016/j.bbamem.2007.08.005. This paper provides atomic details for the interactions between cationic antimicrobial peptides and anionic phosphatidylglycerols PGs (i.e. between aromatic Phe-PG and Arg-PGs) by solution NMR. Abstract.

Li Y, Li X, Li H, Lockridge O, Wang G.* 2007. A novel method for purifying recombinant human host defense cathelicidin LL-37 by utilizing its inherent property of aggregation. Protein Expr Purif. 54, 157-165. DOI: 10.1016/j.pep.2007.02.003. PubMed Abstract

Li Y, Li X, Wang G.* 2007. On-resin cleavage of bacterially expressed fusion proteins for purification of active recombinant peptides SK-29, KR-20, LL-29, and LL-23 from human sweat or skin. Protein Expr Purif. 55, 395-405. DOI: 10.1016/j.pep.2007.04.023. PubMed Abstract

Wang, G.* 2008. NMR of membrane-associated peptides and proteins. Curr. Protein Pept. Sci. 9, 50-69. DOI: 10.2174/138920308783565714. Abstract.

Wang, G.*, Waston, K., Buckheit, R., Jr. 2008. Anti-human immunodeficiency virus type 1 (HIV-1) activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob. Agents Chemother. 52, 3438-3440. DOI: 10.1128/AAC.00452-08. Abstract.

Wang, G.* 2008. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 283, 32637-32643. doi: 10.1074/jbc.M805533200. Click here Protein Data Bank PDB ID: 2K6Oto view the high-quality LL-37 structure determined by 1H,13C,15N-3D NMR. PubMed. Invited lecture: Gordon Research Conference on Antimicrobial Peptides 2011 Italy.

Wang, G.*, Li, X., Wang, Z. 2009. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37, D933-D937. doi: 10.1093/nar/gkn823. Published online Oct. 28, 2008 PubMed Abstract. Invited.

Epand, R.F., Wang, G., Berno, B, Epand, R.M. 2009. Lipid segregation explains the antimicrobial activity of fragments of the human cathelicidin LL-37. Antimicrob. Agents Chemother. 53, 3705-3714. doi: 10.1128/AAC.00321-09. Abstract.

Wang, G.* 2010. Structure, dynamics and mapping of membrane-binding residues of micelle-bound antimicrobial peptides by natural abundance 13C NMR spectroscopy. Biochim. Biophys. Acta 1798, 114-121.

Wang, G.*, Waston, K., Peterkofsky, A., Buckheit, R., Jr. 2010.Identification of novel human immunodeficiency virus type 1 inhibitory peptides based on the antimicrobial peptide database. Antimicrob. Agents Chemother. 54, 1343-1346. doi: 10.1128/AAC.01448-09. Abstract.

Epand, R.M., Epand, R.F., Arnusch, C., Papahadjopoulos-Sternberg, B., Wang, G., Shai, Y. 2010. Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Biochim. Biophys. Acta 1798, 1272-1280. doi: 10.1016/j.bbamem.2010.03.012.

Wang, G*, Li, X., Zasloff, M. 2010. A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid sequence analysis. In "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic strategies" (Wang G. ed.), CABI, Oxfordshire, UK, pp. 1-21. Read the chapter here.

Wang, G* 2010. Database-aided prediction and design of novel antimicrobial peptides. In "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic strategies" (Wang G, ed.), CABI, Oxfordshire, UK, pp. 72-86. This chapter systematically summarizes the methods for prediction and design of antimicrobial peptides.

Wang, G* 2010. Structural studies of antimicrobial peptides provide insight into their mechanisms of action. In "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic strategies"(Wang G, ed.), CABI, Oxfordshire, UK, pp. 141-168. This chapter outlines structural studies of antimicrobial peptides with helical, beta-sheet, and non-alpha-beta conformations, including a diagram that describes structural determination of AMPs by solution NMR (1D to 3D).

Wu, W.K.K., Wang, G., Coffelt, S.B., Betancourt, A.M., Lee, C.W., Yu, J., Sung, J.J.Y., Cho, C.H. 2010. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int. J. Cancer 127(8), 1741-1747. doi: 10.1002/ijc.25489. Abstract.

Wang, G*, Buckheit, K.W., Mishra, B., Lushnikova, T., Buckheit, R.W., Jr. 2011. De novo design of antiviral and antibacterial peptides with varying loop structures. AIDS & Clinical Research S2:003. doi:10.4172/2155-6113.S2-003.

Mishra, B., Wang, G.* 2012. Ab initio design of potent anti-MRSA peptides based on database filtering technology (DFT). J. Am. Chem. Soc. 134, 12426-12429. doi: 10.1021/ja305644e. Abstract. Read featured articles on this work in Chemical & Engineering News (C&EN)90(32):35. JACS Spotlights Sept 2012.

Wang, G.*, Epand, R.F., Mishra, B., Lushnikova, T., Thomas, V.C., Bayles, K.W., Epand, R. 2012. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob. Agents Chemother. 56, 845-856. doi: 10.1128/AAC.05637-11. Published online Nov. 14, 2011. Abstract.

Wang, G* 2012. Post-translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering. Current Biotechnology 1 72-79. PubMed/article download.

Wang, G.*, Elliott, M., Cogen, A.L., Ezell, E.L., Gallo, R.L., Hancock, R.E.W. 2012.Structure, dynamics, antimicrobial and immune modulatory activities of human LL-23 and its single residue variants mutated based on homologous primate cathelicidins. Biochemistry 51, 653-664. doi: 10.1021/bi2016266. Published online Dec. 20, 2011Abstract.

Menousek, J., Mishra, B., Hanke, M.L., Heim, C.E., Kielian, T., Wang, G.* 2012. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int. J. Antimicrob. Agents 39, 402-406. doi: 10.1016/j.ijantimicag.2012.02.003. Abstract.

Mishra, B., Wang, G.* 2012. The importance of amino acid composition in natural antimicrobial peptides (AMPs): an evolutional, structural, and functional perspective. Frontier in Immunology 3, article 221. doi: 10.3389/fimmu.2012.00221. Here is the online article.

Wang, G.* 2012. Natural antimicrobial peptides as promising anti-HIV candidates. Current Topics in Peptide & Protein Research 13, 93-110. PubMed abstract_pdf for this invited review article.

Wang, G.* 2013. Database-guided discovery of potent peptides to combat HIV-1 or Superbugs. Pharmaceuticals 6, 728-758. doi: 10.3390/ph6060728. Abstract for this open access article. New examples indicate the importance of the improved 2D NMR method first demonstrated by Dr. Wang in 2005.

Mishra, B., Epand, R.F., Epand, R.M., Wang, G.* 2013. Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37. RSC Advances 3,19560-19571. DOI:10.1039/C3RA42599A. Abstract.

Wang, G.* 2013. NMR of membrane proteins. In "Advances in Protein and Peptide Sciences Vol. 1" (Ben M. Dunn, ed.), pp. 128-188. Chapter abstract

Wang, G.* 2014. Human Antimicrobial Peptides and Proteins. Pharmaceuticals 7, 545-594. doi: 10.3390/ph7050545. PubMed abstract; Download the PDF here. A review in the special issue on AMPs.

Wang, G.*, Mishra, B., Epand, R.F., Epand, R.M. 2014. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim. Biophys. Acta 1838, 2160-2172. doi: 10.1016/j.bbamem.2014.01.016. Pub-Med Abstract. A review of the 3D structure-activity relationship (SAR) of human LL-37.

Wang, G.*, Hanke, M.L., Mishra, B., Lushnikova, T., Heim, C.E., Chittezham, Thomas V., Bayles, K.W., Kielian, T. 2014. Transformation of Human Cathelicidin LL-37 into Selective, Stable, and Potent Antimicrobial Compounds. ACS Chem. Biol. 9, 1997-2002. DOI: 10.1021/cb500475y. Abstract. The compounds, covered by a patent application, were obtained by combining peptide library screening with structure-based design.

Wang, G.*, Mishra, B., Lau, K., Lushnikova, T., Golla, R., Wang, X.Q. 2015. Antimicrobial peptides in 2014. Pharmaceuticals. 8, 123-150. doi: 10.3390/ph8010123.read the article.

Sol, A., Wang, G., Blotnick, E., Golla, R., Bachrach, G.*, Muhlrad, A. 2015. Interaction of the core fragments of the LL-37 host defense peptide with actin. RSC Advances 5, 9361-9367. DOI: 10.1039/C4RA13007C. Abstract.

Tripathi, S., Wang, G., White, M., Qi, L., Taubenberger, J., Hartshorn, K.L.* 2015. Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One. 10, e0124706. doi: 10.1371/journal.pone.0124706. Abstract.

Mishra, B., Lushnikova, T., Wang, G.* 2015. Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC Advances 5, 59758-59769. DOI: 10.1039/c5ra07896b. Abstract.

Tripathi, S., Wang, G., White, M., Rynkiewicz, M., Seaton, B., Hartshorn, K.L.* 2015. Identifying the Critical Domain of LL-37 Involved in Mediating Neutrophil Activation in the Presence of Influenza Virus: Functional and Structural Analysis. PLoS One. 10, e0133454. doi: 10.1371/journal.pone.0133454. Abstract.

Wang, G.* 2015.Database resources dedicated to antimicrobial peptides. In "Antimicrobial Resistance and Food Safety: Methods and Techniques " (Chen, C.-Y., Yan, X., and Jackson, C.R., eds.), Academic Press, Boston, pp. 365-384. This chapter reviews 23 databases for (or related to) AMPs as of June 2014. Read the chapter here.

Wang, G.* 2015.Improved methods for classification, prediction, and design of antimicrobial peptides. Methods in Molecular Biology. 1268, 43-66. doi: 10.1007/978-1-4939-2285-7_3. Article PDF.

Wang, G.*, Li, X., Wang, Z. 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44, D1087-1093. doi: 10.1093/nar/gkv1278. PDF.

Tanphaichitr, N., Srakaew, N., Alonzi, R., Kiattiburut, W., Kongmanas, K., Zhi, R., Li, W., Baker M., Wang, G., Hickling, D. 2016. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides. Pharmaceuticals 9, 13. doi: 10.3390/ph9010013. PDF.

Wang, G.* 2016. Structural Analysis of Amphibian, Insect and Plant Host Defense Peptides Inspires the Design of Novel Therapeutic Molecules. In "Host Defense Peptides and Their Potential as Therapeutic Agents" (Epand, R.M., ed.), pp 229-252. Abstract

Wang, X.Q., Wang, G.* 2016. Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein Pept. Lett. 23, 707-721. DOI: 10.2174/0929866523666160511151320 Epub May 11. Abstract.

Lee, J.T., Wang, G., Tam, Y.T., Tam, C.* 2016. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-aß Structure. Front. Microbiol. 7, 1799. doi: 10.3389/fmicb.2016.01799. Online PDF.

Mishra, B., Golla, R., Lau, K., Lushnikova, T., Wang, G.* 2016. Anti-Staphylococcal biofilm effects of human cathelicidin peptides. ACS Med. Chem. Lett. 7, 117-121. doi: 10.1021/acsmedchemlett.5b00433. Abstract.

Mishra, B., Reiling, S., Zarena, D., Wang, G.* 2017. Host defense antimicrobial peptide as antibiotics: design and application strategies. Curr. Opin. Chem. Biol. 38, 87-96. doi: 10.1016/j.cbpa.2017.03.014. PubMed abstract

Mishra, B., Lushnikova, T., Golla, R.M., Wang, X.Q., Wang, G.* 2017. Design and surface immobilization of short anti-biofilm peptides. Acta Biomater. 49, 316-328. doi: 10.1016/j.actbio.2016.11.061. PubMed abstract.

White, M.R., Tripathi, S., Verma, A., Kingma, P., Takahashi, K., Jensenius, J., Thiel, S., Wang, G, Crouch, E.C., Hartshorn, K.L.* 2017. Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immun. 23, 77-88. doi: 10.1177/1753425916678470.PubMed Abstract.

Dong, Y.*, Lushnikova, T., Golla, R.M., Wang, X.F., Wang, G.* 2017. Small molecule mimics of DFTamP1, a database designed anti-Staphylococcal peptide. Bioorg. Med. Chem. 25, 864-869. doi: 10.1016/j.bmc.2016.11.056. PubMed abstract.

Wang, X.Q, Bozelli Jr., J.C., Mishra, B., Lushnikova, T., Epand, R.M., Wang, G.* 2017. Arginine-lysine Positional Swap of the LL-37 Peptides Reveals Evolutional Advantages of the Native Sequence and Leads to Bacterial Probes. Biochim. Biophys. Acta 1859, 1350-1361. SciDirect; PubMed

Mishra, B., Wang, G.* 2017. Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Biofouling 33, 544-555. PubMed.

Wang, G.* 2017. Chapter 1: Discovery, Classification and Functional Diversity of Antimicrobial Peptides. In Wang, G. (ed.) "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies" (2nd edition). CABI, Oxfordshire, UK, pp. 1-19. online

Wang, G.* 2017. Chapter 6: Prediction and Design of Antimicrobial Peptides: Methods and Applications to Genomes and Proteomes. In Wang, G. (ed.) "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies" (2nd edition). CABI, Oxfordshire, UK, pp. 101-118. online

Wang, G.* 2017. Chapter 10: Structural insight into the mechanisms of action of antimicrobial peptides and structure-based design. In Wang, G. (ed.) "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies" (2nd edition). CABI, Oxfordshire, UK, pp. 169-187. online

Mishra, B.*, Reiling, S. and Wang, G.* 2017. Chapter 12: Surface immobilization of antimicrobial peptides to prevent biofilm formation. In Wang, G. (ed.) "Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies" (2nd edition). CABI, Oxfordshire, UK, pp. 202-218. online

Zarena, D., Mishra, B., Lushnikova, T., Wang, F., Wang, G.* 2017. The π Configuration of the WWW Motif of a Short Trp-rich Peptide Is Critical for Targeting Bacterial Membranes, Disrupting Preformed Biofilms and Killing Methicillin-resistant Staphylococcus aureus. Biochemistry 56, 4039-4043. PubMed

Mishra, B., Wang, G.* 2017. Individual and combined effects of engineered peptides and antibiotics on the Pseudomonas aeruginosa biofilms. Pharmaceuticals 10(3), 58. Online paper. PubMed.

Wang, G.*, Mishra, B. 2018. Mechanism of action of tethered antimicrobial peptides. In Tiwari, A. (ed.) “Chapter 24: Handbook of Antimicrobial Coatings”, Elsevier, pp. 559-566. ISBN: 978-01281-1982-2. online

Wang, X., Mishra, B., Lushinikova, T., Narayana, J.L., and Wang, G.* 2018. Amino acid composition determines peptide activity spectrum and hot spot-based design of merecidin. Advanced Biosystems 2, 1700259. doi.org/10.1002/adbi.201700259. online.

He, M., Zhang H., Li, Y., Wang G, Tang, B., Zhao, J., Huang, Y., and Zheng, J. 2018. Cathelicidin-derived antimicrobial peptides inhibit Zika virus through direct inactivation and interferon pathway. Frontiers in Immunology 9, 722. doi: 10.3389/fimmu.2018.00722. online

Mishra, B., Wang, X., Lushinikova, T., Zhang, Y., Golla, R.M., Narayana, J.L., Wang, C., McGuire, T.R., and Wang G.* 2018. Antibacterial, Antifungal, Anticancer Activities and Structural Bioinformatics Analysis of Six Naturally Occurring Temporins. Peptides 106, 9-20. DOI: 10.1016/j.peptides.2018.05.011 . PubMed

Kiattiburut, W., Zhi, R., Lee, S., Foo, A., Hickling, D., Keillor, J., Goto, N., Li, W., Conlan, W., Angel,J., Wang G., Tanphaichitr, N.* 2018. Antimicrobial peptide LL-37 and its truncated forms, GI-20 and GF-17, exert spermicidal effects and microbicidal activity against Neisseria gonorrhoeae. Human Reproduction 33, 2175-2183. DOI: 10.1093/humrep/dey315. online article.

Wang, G*. Narayana, J.L., Mishra, B., Zhang, Y., Wang, F., Wang, C., Zarena, D., Lushnikova, T., and Wang, X. 2019. Chapter 12: Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. In “Antimicrobial Peptides: Basics for Clinical Application” (Katsumi Matsuzaki edited), Spinger, in press.

* Corresponding author.

Special issues on Antimicrobial Peptides edited by Dr. Guangshun Wang:

(1) Antimicrobial peptides from different life kingdoms (edited by G. Wang);

(2) Antimicrobial Peptides: Expanded Activity Spectrum and Applications (Edited by G. Wang).

Antimicrobial Peptide Books edited by Dr. Guangshun Wang:

Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies (edited by G. Wang), CABI, England, 2010.

Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies (edited by G. Wang), CABI, England, version 2, 2017. ISBN: 978-1-78639-039-4 Published on Sept 5, 2017.

Identification and Characterization of Antimicrobial Peptides with Therapeutic Potential (edited by G. Wang), MDPI, 2017. ISBN: 978-3-03842-463-5 Published on Nov 3, 2017.

Last updated: Jan 2, 2019 | Copyright 2003-2019 Dept of Pathology & Microbiology, UNMC All Rights Reserved